sonic surfer

a binaural audio game by Sam Smith

overview

The initial vision for this game was based on control sys-
tems such as the Wii Fit and mobile phone games like
Temple Run. Yet, the model for this game does not rely on
beating levels or defeating “bosses”. Instead, Sonic Surfer
relies on auditory feedback and physical control: the play-
er leans on a custom built platform in the direction of the
noises that seem happy/safe. The hardware was built using
an arduino uno, 4 Force Sensing Resistors (FSRs) and a la-
ser cut enclosure to house the components. The software
was programmed primarily in max/MSP in addition to
java to report the sensors data to max/MSP (fig. 1-2). This
game relies on intense focus and extreme coordination.

introduction

Binaural audio is a format of audio encod-
ing and decoding that allows for sound source
spatialization within a pair of headphones.
Through the usage of Head Related Transfer
Functions (HRTFs), a mathematical equation
is used to determine how a given sound will be
perceived by one’s ear. This technology allows
for spatialization of audio in a home setting.

Binaural audio has long been used as an alter-
native to more hardware intensive and intricate
systems like ambisonics. Recently, binaural audio
has made its way into video games such as Ma-
rio-cart, Modern Warfare and the like, under the
pseudonym “3d audio”. This audio format gave
players with headphones the advantage of hear-
ing sounds behind them so that they can proac-
tively enhance their performance. The challenge
of creating audio-only games is designing com-
pelling interaction and feedback, which Son-
ic Surfer seeks to explore and improve upon.

controller

java
arduino 4| —L process data

\ fsry fsr, )

y-axis

{ fsr,

X-axis

fsr; \

fig. 1 - Controlier Design

hardware

This model of interaction was based around
designing a controller with intuitive con-
trol. Sonic Surfer’s controller stands on a
panel with 4 FSRs to detect the level of pres-
sure at each corner and help me determine
where the user was leaning on the board. I
used an ardiuno uno in order to read the data.

interaction and feedback

The interaction between the user and the game is based
around the human ability to localize sound. The play-
er is prompted to lean towards the “good sounds” and
to avoid the “bad sounds” This interaction model al-
lows for interpretation by the player of what is good
and what is bad. The control board is hyper sensitive
even to the smallest shifts in weight, making it ex-
tremely effective for accurate localization of sound. I
chose to engage with binaural audio because it allowed
for me to use the forward/backward lean of the play-
er as a mode of control as opposed to just left/right.

computer
Max/MSP

— binaural processing — QEKIOOUND

fig. 2 - signal flow



softwdare

note generation

The melodies for the synth voices are generate by
randomly selecting a sequence length (number of
notes). For each of these notes, a randomly select-
ed scale degree is assigned to the sequence. Note
length is also assigned to each note in the sequence.
The note sequence is then cycled through and fed to
two voices, both based around subtractive synthesis.

Additionally, as the game progresses, changes are made
to the parameters on the note generation algorithm.
Some parameters include note length as well as the scale
that the generator uses. These changes correspond to
the success of the player. As the player makes more and
more mistakes the note lengths become much shorter
and the scale is switched to a minor or chormatic scale.
This makes it even harder to differentiate the voices.

sound design

Both the good and bad synth voices were generated
through digital synthesis within max/MSP. The voices
have pitch bend and detuning controls. The detuning
control changes the pitch of the triangle wave, while the
square wave would stay in tune. The bad voice utiliz-
es these controls a lot more than the good voice since
the sliding tone of the pitch bend was very ominous.

As was mentioned before, as the game progreses, the
sounds change in somewhat unpredictable ways. This is
to ensure that the game is different each time it is played
and to make the player question their performance in the
game. This adds one more layer of difficulty to the model.

The atmospheric noise heard throughout the game
is generated through a series of noise objects which
have filters that modulate at different rates. This noise
is the only audio feedback given according to where
the player is currently leaning. This feature helps the
user feel more immersed within the audio because
their motions have a direct impact on what they are
hearing and where in their headphones they sense it.

coordinate generation

The two primary sound sources (synth voices) are lo-
calized via a randomized coordinate generator. We can
describe the sound locations in this game on a carte-
sian coordinate system from -1 to 1 (front to back, left
to right). The coordinate generator utilizes the max/
MSP [drunk] object to hop from value to value ran-
domly while sweeping across the map. These sound
sources move around each other and intersect at time.
From here the coordinate generators send their data
to the binaural audio encoder and subsequently en-
code the individual sound sources to the coorespond-
ing location. Throughout the game, the coordinates
from the controller are compared to those of the good
and bad sound sources. Based on how close these val-
ues are the game either becomes more or less diffi-
cult. The players score is ultimately a reflection of how
long they were able to play the game before failing.

sound source #1

(0,.87) \1

-1 1
player
(0,0) sound source #2
-1 (.88, -.67)

fig. 3 - example sound field

more information

game demo - https://bit.ly/sonic_surfer
source code - https://bit.ly/GH_source



https://bit.ly/sonic_surfer
https://bit.ly/GH_source

