
This installation was designed for the final project
of an introductory computer programming course.
The project prompt was to create a program that uti-
lized some form of artificial intelligence or machine
learning. We chose to create a product that sonified
tweets sent to our twitter account, and then broad-
casted the sound to the user via headphones. The
program’s audio response was created by resampling
existing audio files based on natural language pro-
cessing information from the tweet. This project uti-
lized python, Twitter’s API, pyaudio, and portaudio.
The project was inspired by musical pieces with al-
ternative notation such as pictures and or drawings;
our project utilized tweets as an alternative medium.

Our project relies on two primary pieces of media to
operate-- a source text and audio files. In the original
presentation, we chose to use Moby Dick by Herman
Melville as the source text and a variety of isolated audio
files (drums, keyboard, vocals, piano, etc.) as the source
audio. We chose the classic novel for its antiquated lan-
guage and unique subject matter. Additionally, this text
is lengthy and reflects common language phenome-
nons such as high frequency of words such as “and” and
“the.” The audio files were taken from a variety of sourc-
es such as commercial recordings and personal record-
ing projects, all of which had a unique timbre and feel.

The final sonic result, outwardly having little to do
with our intertextual deconstructions, actually does
the same thing with music. It takes the natural,
spontaneous inclinations of improvisation in mu-
sic, hearkening back to the texts of madrigals, and
assigns them an objectivity, in frequency base and
amplitude, set by the computer. The intertextuality
between incoming Tweets and Moby Dick also exists
as a dichotomy between improvisational spontaneity
and rigid counterpoint or aleatoric composition: this
schism is represented by the loud, noisy content of
our source files - while each file maintains its own
internal consistency, the compilation of disparate
parts sounds cacophonous. They depict that the
need to make, that drives creativity, is not objective.

Tweet Sonifier
an interactive media piece by Sam Smith,

Sophie Mirza, Joey Fortino, and Geoff Brown

introduction

the result

The first step in our code was to destroy Moby
Dick. The code mangles the writing - the order-
ing of words, spacings, capitalization, punctu-
ation and all context of the words are stripped
This reduces the intent of the novel to the means
by which the intent is portrayed: words them-
selves. Each word is stripped of their contex-
tual meaning and is exchanged objectivity, in
the form of a number. This reduction allows for
a formulaic base by which to evaluate through
our lens of Tweets. The suggestion is that any
text could have been used, as each word in it
is just that - a word. While other books prob-
ably won’t use “whale” or “harpoon” or “sea”
as much, the words which are most likely to
be tweeted from our account are the most ge-
neric - “the,” “and,” etc.. Evaluating a work for
its words and not for its meaning yields noth-
ing. Context gives meaning, and that meaning
is unstable and multiple, as is one of the core
arguments for Post-Structuralist philosophy.

Upon initialization, the program loads files in
the audioFiles folder. It takes the guitar, bass,
drum, and vocal files and splits them into 10
second chunks, performing a Fast-Fourier
Transform (FFT) on the chunks and assigning
each chunk two values between 0 and 1 , which
correspond to Frequency and Amplitude. It
cleans the .txt file (“Moby Dick.txt”) to strings
with no special characters and trains the Lan-
guage Model on the text. Based on the incom-
ing Tweet stream, it assigns each Tweet a value
based on the average frequency of the words in
the tweet by comparing them to the language
model and scales. This is then compared to the
Frequency for guitar and bass files, and ampli-
tude for drum and vocal files. These are layered
on top of each other and then played back.

more info

project prompt - https://
eecs183.org/showcase

process

https://eecs183.org/showcase
https://eecs183.org/showcase

